Dos ángulos son complementarios cuando la suma de ambos es 90º.
Para hallar el angulo complementario de un ángulo será necesario restar a 90º el ángulo dado.
Ejemplos:
∙ Hallar el ángulo complementario de 23∘ 22′ 43″
\begin{array}{rrr} 90^{\circ} & \color{white}{0} & \color{white}{0} \\ -23^{\circ} & 22' & 43'' \\ \hline \\ \color{white}{0} & & \color{white}{0}\end{array}\rightarrow\begin{array}{rrr} 89^{\circ} & 60' & \color{white}{0} \\ -23^{\circ} & 22' & 43'' \\ \hline \\ \color{white}{0} & \color{white}{0} & \color{white}{0}\end{array}\rightarrow\begin{array}{rrr} 89^{\circ} & 59' & 60'' \\ -23^{\circ} & 22' & 43'' \\ \hline \\ 66^{\circ} & 37' & 17''\end{array}
\bullet Hallar el ángulo complementario de 47^{\circ}\ 50'\ 5''
\begin{array}{rrr} 90^{\circ} & \color{white}{0} & \color{white}{0} \\ -47^{\circ} & 50' & 5'' \\ \hline \\ \color{white}{0} & & \color{white}{0}\end{array}\rightarrow\begin{array}{rrr} 89^{\circ} & 60' & \color{white}{0} \\ -47^{\circ} & 50' & 5'' \\ \hline \\ \color{white}{0} & \color{white}{0} & \color{white}{0}\end{array}\rightarrow\begin{array}{rrr} 89^{\circ} & 59' & 60'' \\ -47^{\circ} & 50' & 5'' \\ \hline \\ 42^{\circ} & 9' & 55''\end{array}
\bullet Hallar el ángulo complementario de 1^{\circ}\ 2'\ 33''
\begin{array}{rrr} 90^{\circ} & \color{white}{0} & \color{white}{0} \\ -1^{\circ} & 2' & 33'' \\ \hline \\ \color{white}{0} & & \color{white}{0}\end{array}\rightarrow\begin{array}{rrr} 89^{\circ} & 60' & \color{white}{0} \\ -1^{\circ} & 22' & 33'' \\ \hline \\ \color{white}{0} & \color{white}{0} & \color{white}{0}\end{array}\rightarrow\begin{array}{rrr} 89^{\circ} & 59' & 60'' \\ -1^{\circ} & 2' & 33'' \\ \hline \\ 88^{\circ} & 57' & 27''\end{array}
\bullet Hallar el ángulo complementario de 83^{\circ}\ 4'\ 27''
\begin{array}{rrr} 90^{\circ} & \color{white}{0} & \color{white}{0} \\ -83^{\circ} & 4' & 27'' \\ \hline \\ \color{white}{0} & & \color{white}{0}\end{array}\rightarrow\begin{array}{rrr} 89^{\circ} & 60' & \color{white}{0} \\ -83^{\circ} & 4' & 27'' \\ \hline \\ \color{white}{0} & \color{white}{0} & \color{white}{0}\end{array}\rightarrow\begin{array}{rrr} 89^{\circ} & 59' & 60'' \\ -83^{\circ} & 4' & 27'' \\ \hline \\ 6^{\circ} & 55' & 33''\end{array}
Ya es todo, seguid practicando
viernes, 28 de febrero de 2014
Suscribirse a:
Enviar comentarios (Atom)
0 comentarios:
Publicar un comentario