∙(3x2−5x4+3x)+(x4−x2+9x)=
=(−5+1)x4+(3−1)x2+(3+9)x=
=−4x4+2x2+12x
∙ Siendo P(x)=x2−3x+4 ; Q(x)=3x2+4x−2 hallar:
P(x)+Q(x) y P(x)−Q(x)
P(x)+Q(x)=x2−3x+4+3x2+4x−2=4x2+x+2
P(x)−Q(x)=x2−3x+4−(3x2+4x−2)=
=x2−3x+4−3x2−4x+2=−2x2−7x+6
∙ Siendo P(x)=4x2−3x5−x3+3 ; Q(x)=−x3+4−5x2 hallar:
P(x)+Q(x) y P(x)−Q(x)
P(x)+Q(x)=4x2−3x5−x3+3−x3+4−5x2=−3x5−2x3−x2+7
P(x)−Q(x)=4x2−3x5−x3+3−(−x3+4−5x2)=
=4x2−3x5−x3+3+x3−4+5x2=−3x5+9x2−1
0 comentarios:
Publicar un comentario